

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0352 vom 30. Oktober 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Betonschraube ULTRACUT FBS II

Mechanische Dübel zur Verwendung im Beton

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

20 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601

ETA-15/0352 vom 12. April 2016

Europäische Technische Bewertung ETA-15/0352

Seite 2 von 20 | 30. Oktober 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-15/0352

Seite 3 von 20 | 30. Oktober 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Die fischer Betonschraube ULTRACUT FBS II ist ein Dübel in den Größen 6, 8, 10, 12 und 14 mm aus gehärtetem Kohlenstoffstahl. Der Dübel wird in ein vorgebohrtes zylindrisches Bohrloch geschraubt. Das Spezialgewinde schneidet während des Setzvorgangs ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 und C 2
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 und C 2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 7
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorien C1 und C2	Siehe Anhang C 3, C 4 und C 7

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 5 und C 6

Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

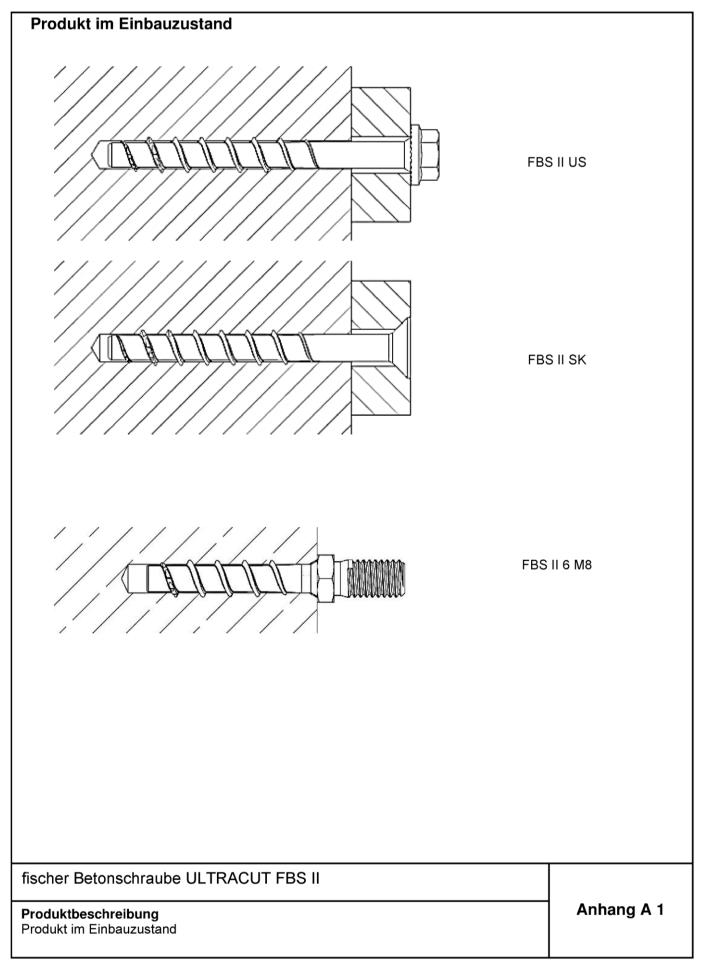
Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-15/0352

Seite 4 von 20 | 30. Oktober 2018

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 30. Oktober 2018 vom Deutschen Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt i. V. Abteilungsleiter

Beglaubigt

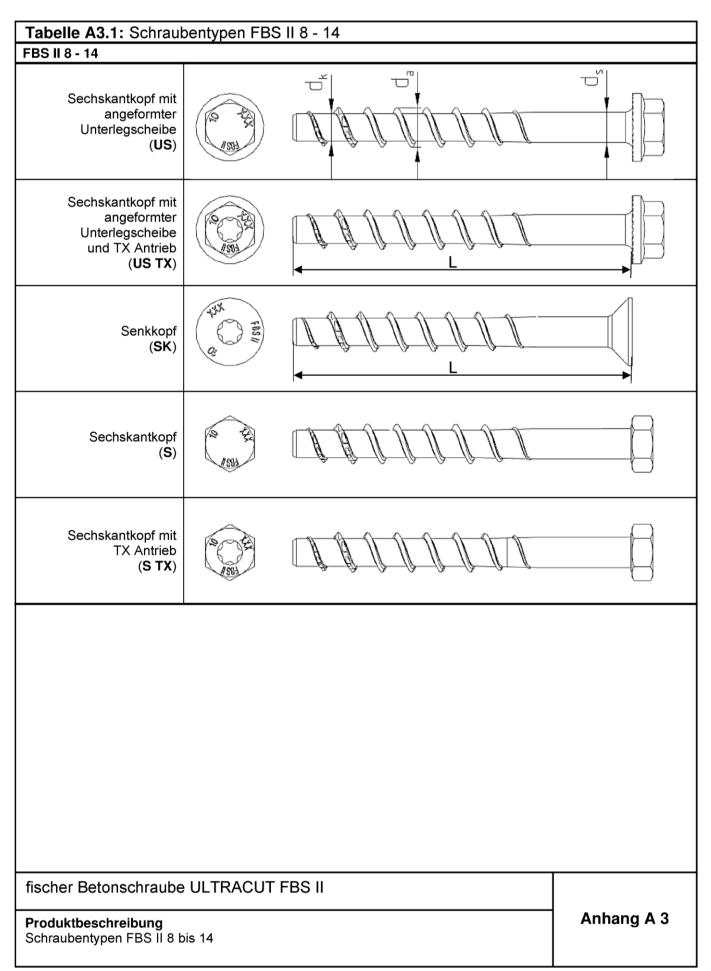


Tabelle A2.1: Schra	aubentypen FB	SS II 6	
FBS II 6			
Sechskantkopf mit angeformter Unterlegscheibe (US)			
Sechskantkopf mit angeformter Unterlegscheibe und TX- Antrieb (US TX)	1		
Senkkopf (SK)	NXX NXX		
Linsenkopf (P)	FBS		
Linsenkopf groß (LP)	FBS		
Metrisches Außengewinde M8 oder M10 (M)	(XX)		
Metrisches Innengewinde M8/M10 kombiniert (M8/M10 I)			
fischer Betonschraul	oe ULTRACUT	FBS II	
Produktbeschreibung Schraubentypen FBS II (6		Anhang A 2

Z63508.18

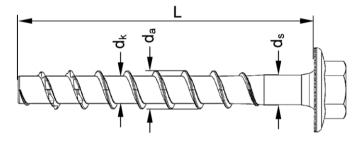
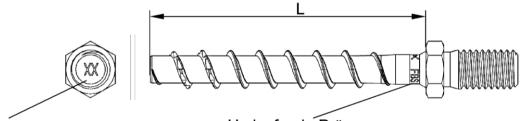


Tabelle A4.1: (Geometrie und Material
-----------------	------------------------

Schraubentun	Cräßo		Alle Kopfformen							
Schraubentyp /	6	8	10	12	14					
Gewindeaußendurchmesser	d _a		7,75	10,3	12,5	14,5	16,6			
Kerndurchmesser	d _k	[mm]	5,65	7,4	9,4	11,3	13,3			
Schaftdurchmesser	d _s		6,0	8,0	9,9	11,7	13,7			
Material		[-]	Gehärteter Kohlenstoffstahl; A _{5%} ≥ 8%							
Beschichtung	Beschichtung		Verzinkt							


Kopfprägung bei US, US TX, S; S TX, SK, P, LP

FBS II: Produktkennzeichnung

XXX: Schraubenlänge L

Prägungen bei M8, M10, M8/M10 I

Stirnprägung:

XX: Schraubenlänge L

Umlaufende Prägung:

FBS II: Produktkennzeichnung

6: Schraubengröße

fischer Betonschraube ULTRACUT FBS II

Produktbeschreibung

Geometrie und Kennzeichnung

Anhang A 4

Angaben zum Verwendungszweck												
Tabelle B1.1: Beanspruchung der V	<u>'erank</u>	erur	าg									
Größe 6 8 10 12 14												
Nominelle Verankerungstiefe [mm]		50	65	55	65	85	60	75	100	65	85	115
Statische und quasi-statische Lasten im gerissenen und ungerissenen Beton							√					
Brandbeanspruchung												
Seismische Leistungskategorie C1			1			/			/			/
Seismische Leistungskategorie C2		1	•			•						•

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013
- · Ungerissener oder gerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

Bauteile unter den Bedingungen trockener Innenräume.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. In den Konstruktionszeichnungen ist die Position der Schraube anzugeben (z. B. Position der Schraube relativ zur Bewehrung oder zu Auflagern, usw.).
- Bemessung der Verankerungen gemäß FprEN 1992-4: 2016 und EOTA Technical Report TR 055

Montage:

- · Hammerbohren oder Bohren mit Hohlbohrern: Alle Größen und alle Verankerungstiefen.
- Alternativ Diamantbohren : Alle Größen und Verankerungstiefen ab Durchmesser 8
- Einbau der Schraube durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Im Falle einer Fehlbohrung: Ein neues Bohrloch muss in einem Mindestabstand der doppelten Tiefe der Fehlbohrung erstellt werden, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und nur, wenn die Fehlbohrung nicht in Richtung der Schräg- oder Querlast liegt.
- Justierbarkeit gemäß Anhang B4 für: Alle Größen und alle Verankerungstiefen.
- Die Reinigung des Bohrlochs ist nicht notwendig bei der Verwendung von Hohlbohrern oder:
 - Wenn senkrecht nach oben gebohrt wird
 - wenn senkrecht nach unten gebohrt und die Bohrlochtiefe erhöht wird. Es ist empfehlenswert, die Bohrlochtiefe um zusätzlich 3 do zu erhöhen.
- · Nach der Montage darf ein Weiterdrehen der Schraube nicht möglich sein.
- · Der Schraubenkopf muss am Anbauteil anliegen und darf nicht beschädigt sein.
- Für Anwendungen nach der seismischen Leistungskategorie C2: Der Spalt zwischen Schraubenschaft und Anbauteil muss mit Mörtel verfüllt sein; Mörteldruckfestigkeit ≥ 50 N/mm² (z. B. FIS V, FIS HB, FIS SB oder FIS EM Plus).

fischer Betonschraube ULTRACUT FBS II	
Verwendungszweck Bedingungen	Anhang B 1

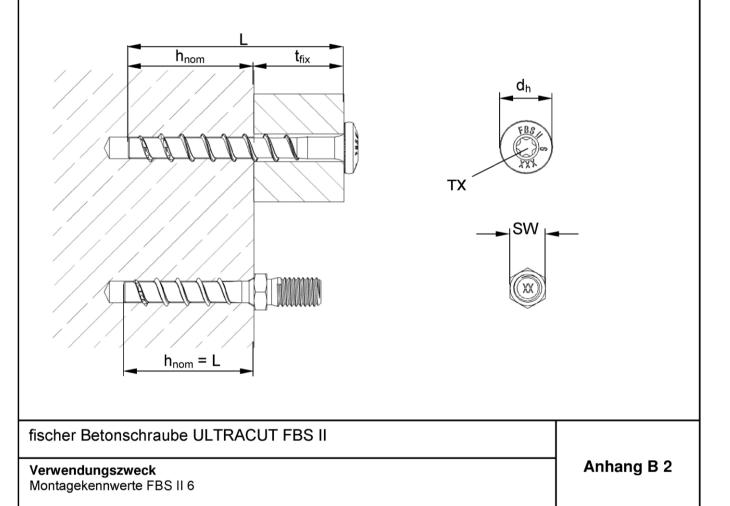
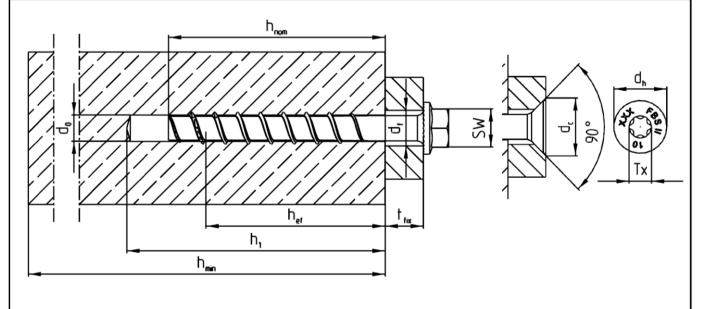
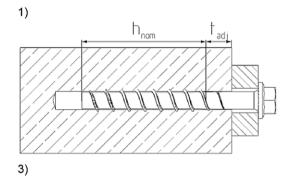


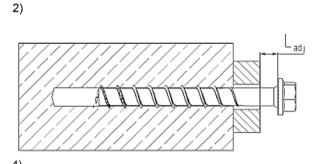
Tabelle B2.1: Montagekenny	verte FBS	II 6 - B	ohrlocherstellung und Setzgeräte					
FBS II 6			Alle Kopfformen					
Nominelle Verankerungstiefe	h_{nom}		40 ≤ h _{nom} ≤ 55					
Bohrernenndurchmesser	d_0		6					
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6,4					
Durchgangsloch im Anbauteil	d _f ≤	[mm]	8					
Bohrlochtiefe			h _{nom} + 10 ¹⁾					
Bohrlochtiefe bei Justierung	– h ₁ ≥		h _{nom} + 20					
Tangential-Schlagschrauber	$T_{imp,max}$	[Nm]	450					
Maximales Drehmoment bei Montage mit Sechskantmutter bei Varianten M8 und M10	T_{max}	[Nm]	10					

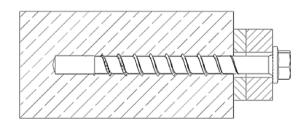
 $^{^{1)}}$ Bei Montage vertikal nach oben kann der Wert auf h_{nom} + 5 reduziert werden

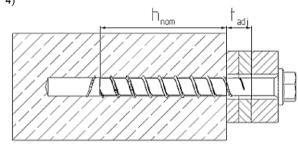

Tabelle B2.2: Montagekennwerte FBS II 6 – Antriebe und Anbauteile

FBS II 6			US	US TX	SK	Р	LP	M8	M10 M8/M10
Schlüsselweite	SW	[mm]	10		-		-		13
TX Größe	TX	[-]	-		3	0			
Kopfdurchmesser	d _h		1	7	13,5	14,4	14,4 17,5		-
Dicke des Anbauteils	t _{fix} ≤	[mm]			L - h _{nom}				
Cohraubanlänga	L _{min} =	[mm]			40				
Schraubenlänge	L _{max} =			325					55


0.1 1 110								FBS II						
Schraubengröße			8		10			12			14			
Nominelle Verankerungstiefe	h_{nom}		50	65	55	65	85	60	75	100	65	85	115	
Bohrernenndurchmesser	d_0		æ	3		10			12			14		
Bohrerschneiden- durchmesser	- d _{cut} ≤		8,4	45		10,45			12,50			14,50		
Schneidendurchmesser Diamantbohrer	Gcut =	[mm]	8,	10		10,30			12,30			14,30		
Durchgangsloch im Anbauteil	d _f		10,6 – 12,0		12,8 - 14,0			14,8 – 16,0			16,9 – 18,0			
Schlüsselweite (US,S)	SW		13		15			17			21			
Tx Größe	Tx	[-]	4	0	50									
Durchmesser Senkkopf	d_h		1	8		21					_			
Senkdurchmesser für Senkkopf in Anbauteil	d _c		2	0		23								
Bohrlochtiefe			60	75	65	75	95	70	85	110	80	100	130	
Bohrlochtiefe (bei Justierung)	h₁≥	[mm]	70	85	75	85	105	80	95	120	90	110	140	
Dicke des Anbauteils	$t_{\text{fix}} \leq$						l	h _{non}	n					
Cohroubonlänge	L _{min} =		50	65	55	65	85	60	75	100	65	85	115	
Schraubenlänge	L _{max} =		400	415	405	415	435	410	425	450	415	435	465	
Tangential-Schlagschrauber	T _{imp,max}	[Nm]	60	00					650					




fischer Betonschraube ULTRACUT FBS II	
Verwendungszweck Montagekennwerte FBS II 8 - 14	Anhang B 3



Justierung

Es ist zulässig, die Schraube bis zu zwei Mal zum Justieren zu lösen.

Hierfür kann die Schraube bis zu einem Maximum von L_{adj} = 20 mm von der Oberfläche des Ausgangsanbauteils gelöst werden.

Die insgesamt zulässige Dicke der während des Justierprozesses eingefügten Unterfütterung beträgt $t_{\rm adj}$ = 10 mm.

Tabelle B4.1: Mindestbauteildicke, minimale Achs- und Randabstände

Schraubengröße	chrauhengröße			FBS II											
Schlauberigioise	ubengroise				3	10			12						
Nominelle Verankerungstiefe	h_{nom}		40 bis 55	50	65	55	65	85	60	75	100	65	85	115	
Mindestbauteildicke	h_{min}	[mm]	max.(80; h ₁ ¹⁾ + 30)	100	120	100	120	140	110	130	150	120	140	180	
Minimaler Achsabstand	S _{min}		35	3	35		40		50			60			
Minimaler Randabstand	C _{min}		35	35		40		50							

¹⁾ Bohrlochtiefe gemäß Tabelle B3.1

fischer Betonschraube ULTRACUT FBS II

Verwendungszweck
Justierung
Mindestbauteildicke, minimale Achs- und Randabstände

Anhang B 4

Montageanleitung	
Bohrloch unter Verwendung Hohlbohrers oder Diamantb Durchmesser 8) erstellen.	ohrers (ab
Bohrlochdurchmesser d ₀ un Bohrlochtiefe h ₁ gemäß Tab	elle B2.1 und B3.1
Bohrlochtiefe um zusätzlic	hrlochs ist nicht notwendig hlbohrern oder n gebohrt wird en gebohrt und die Es ist empfehlenswert, die ch 3 d ₀ zu erhöhen.
Einbau mit einem beliebiger Schlagschrauber bis zum m Drehmoment (T _{imp,max}). Alter Werkzeuge ohne ein angege zugelassen (z. B. Ratsche). gelten nicht für den manuell	aximal genannten rnativ sind alle anderen ebenes Drehmoment Die Drehmomente T _{imp,max}
Nach dem Einbau darf kein Schraube möglich sein. Der dem Anbauteil aufliegen und	Schraubenkopf muss auf
Optional: Es ist zulässig, die Schraube Hierfür kann die Schraube bvon Ladj = 20 mm von der Ole Ausgangsanbauteils gelöste Die insgesamt zulässige Die Justierprozesses eingefügtet Linterfütterung beträcht.	ois zu einem Maximum berfläche des werden. oke der während des en
Unterfütterung beträgt t _{adj} =	TO Min.
Ringspaltverfüllung: Für Anwendungen nach der kategorie C2: Der Spalt zwis Anbauteil muss mit Mörtel v Mörteldruckfestigkeit ≥ 50 N FIS SB oder FIS EM Plus). Ringspaltverfüllung wird die empfohlen.	schen Schraubenschaft und erfüllt sein; /mm² (z. B. FIS V, FIS HB, Als Hilfsmittel zur
fischer Betonschraube ULTRACUT FBS II	
Verwendungszweck Montageanleitung	Anhang B 5

Zuglast und C Viderstand ert Viderstand ert Biegemoment	$\begin{array}{c} \text{Querlast} \\ N_{\text{Rk,s}} \\ \gamma_{\text{Ms}} \\ V_{\text{Rk,s}} \\ \gamma_{\text{Ms}} \\ k_7 \\ M^0_{\text{Rk,s}} \end{array}$	[kN] [-] [kN]		9,0	;1 ,4	13,3				
ert Viderstand ert	γ_{Ms} $V_{Rk,s}$ γ_{Ms} k_7	[-] [kN]		9,0	,4	13,3				
Viderstand ert	$V_{Rk,s}$ γ_{Ms} k_7	[kN]		9,0	,	13,3				
ert	$V_{Rk,s}$ γ_{Ms} k_7				5	13,3				
	k ₇	[-]		1	5					
Biegemoment		[-]			,0					
Biegemoment	M^0_{Rks}	Faktor für Duktilität K ₇								
	Charakteristisches Biegemoment M ⁰ _{Rk,s} [Nm] 17,1 Herausziehen									
Ingerissen	$N_{Rk,p}$	[kN] -	8,0	10,0	12,0	13,5				
Berissen	$N_{Rk,p}$		2,5	3,5	4,0	5,0				
25/30				1,	12	'				
30/37	-		1,22							
35/45	- Ψc	,	1,32							
40/50	- 10	[-]	1,41							
45/55			1,50							
50/60	<u> </u>	<u> </u>	1,58							
ontagebeiwert γ_{inst} [-] 1,0										
d Spalten; Be		ruch auf	der lastabge	wandten Seite						
ngstiefe	h _{ef}	[mm]	32	36	40	44				
enen Beton	k _{ucr,N}	[-1		1	1,0					
	k _{cr,N}	[-]		7	,7					
Charakteristischer Randabstand				1,5	h _{ef}					
	S _{cr,N}	-								
		[kN]								
		[mm]								
		+								
rsagen	k ₈	[-]								
	γinst			1	,0					
			40	45	50					
seton	If	Imm1 -	40	45	50	55				
sser	d_{nom}	[]		(6					
erfütterung	t _{adi}	[mm]		1	0					
	n _a	[-]								
	ngstiefe enen Beton en Beton	225/30 230/37 235/45 240/50 245/55 250/60 7 inst d Spalten; Betonaush angstiefe hef enen Beton k _{cr,N} Randabstand c _{cr,N} Achsabstand s _{cr,N} Achsabstand s _{cr,N} and Spalten N ⁰ _{Rk,sp} and Spalten c _{cr,sp} and Spalten s _{cr,sp} arsagen k ₈ 7 inst Beton I _f asser	Serissen N _{Rk,p} C25/30 C30/37 C35/45 Ψc C40/50 γinst C45/55 C50/60 Ingstiefe hef [mm] Ingstiefe hef [mm] Ingene Beton k _{cr,N} [-] Randabstand c _{cr,N} [mm] Achsabstand s _{cr,N} [kN] Achsabstand s _{cr,N} [kN] And Spalten N ⁰ _{Rk,sp} [kN] Ind Spalten s _{cr,sp} [mm] Insagen k ₈ [-] Prinst [mm] [mm] Seton If [mm] Insagen Insagen [mm] Insagen Insagen [mm] Insagen [mm] [mm] Insagen	Serissen N _{Rk,p} 2,5 C25/30 (230/37) (235/45) C40/50 (245/55) (250/60) C45/55 (250/60) (250/60) C50/60 (250/60) (250/60)	Serissen N _{Rk,p} 2,5 3,5 C25/30 1, 30/37 1, C35/45 40/50 1, 1, C45/55 1, 1, 1, C50/60 1, 1, 1, C60 1, 1, 1, C7 1, 1,	Serissen N _{Rk,p} 2,5 3,5 4,0				

Tabelle C2.1:	: Leistung für	r statis	che u	nd qı	ıasi-s	tatis	che B				3S II 8	- 14		
Schraubengröße	Э				2		10		FBS II	12			14	
Nominelle Veran	kerunastiefe	h _{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Stahlversagen 1														
Charakteristisch		$N_{Rk,s}$	[kN]	3	5		55			76			103	
Teilsicherheitsbe		γMs	[-]						1,4					
Charakteristisch		V _{Rk,s}	[kN]	13,1	19,0	29	9,4	34,9	31	9	42,7	46	5.5	61,7
Teilsicherheitsbe		γMs		,	,		,	,	1,5	,	,		, -	,
Faktor für Duktili	tät	k ₇	[-]						1,0					
Charakt. Biegem	noment	M ⁰ _{Rk,s}	[Nm]	5	1		95			165			269	
Herausziehen		T(K,S												
Charakt. Widerstand in	Ungerissen	$N_{Rk,p}$	[kN]						- ¹⁾					
Beton C20/25	Gerissen	$N_{Rk,p}$	[kN]	6	12	9	12				- ¹⁾			
	C25/30								1,12					
	C30/37	•							1,22					
Erhöhungs-	C35/45	Ψ _c	l						1,32					
faktoren Beton	C40/50	. + •	[-]						1,41					
	C45/55								1,50					
	C50/60								1,58					
Montagebeiwert		γinst	[-]						1,0					
Betonversagen und Spalten; Betonausbruch auf der lastabgewandten Seite														
Effektive Verank	•	h _{ef}	[mm]	40	52	43	51	68	47	60	81	50	67	93
Faktor für ungeri		k _{ucr,N}	[mm]						11,0				•	•
Faktor für geriss		k _{cr,N}	[mm]						7,7					
Charakteristisch	er Randabstand	C _{cr,N}	[mm]						1,5 h _{ef}					
Charakteristisch	er Achsabstand	S _{cr,N}	[mm]						3 h _{ef}					
Charakt. Randak	<u> </u>	C _{cr,sp}	[mm]						1,5 h _{ef}					
Charakt. Achsab	<u> </u>	S _{cr,sp}	[mm]						3 h _{ef}					
Faktor für Pryout		k ₈	[-]	1,0	2,0	1,0				2	.,0			
Montagebeiwert		γinst	[-]						1,0					
Betonkantenbru			1.				I							
Effektive Länge i	in Beton	I _f	[mm]	50	65	55	65	85	60	75	100	65	85	115
Nomineller Schraubendurch	messer	d _{nom}	[mm]		3		10			12			14	
Justierung max. Dicke der U	Interfitten	4	[mana]						10					
		t _{adj}	[mm]						10					
Max. Anzahl der		n _a	[-]						2					
	hen nicht maßge	-	[-]											
Leistungen	nschraube UL				mit Fl	BS II 8	3 - 14				 	nhar	ng C	2

FBS II 6							
Nominelle Verankerungstiefe	h _{nom}	[mm	n] 40	45	5	0	55
Stahlversagen für Zuglast und	Querlas	t		•			
	$N_{Rk,s,eq}$	FLAND			21		
Charakteristischer Widerstand	$V_{Rk,s,eq}$	[kN]		6,3			9,3
Ohne Ringspaltverfüllung	$\alpha_{\sf gap}$.,			0,5		
Mit Ringspaltverfüllung ¹⁾	$\alpha_{\sf gap}$	[-]		1,0			
Herausziehen			<u> </u>				
Charakteristischer Widerstand	NI	[LAI]	2.5	2.5	1	^	5.0
n gerissenem Beton	$N_{Rk,p,eq}$	[kN]	2,5	3,5	4,	,0	5,0
Betonversagen							
Effektive Verankerungstiefe	h_{ef}		32	36	4	0	44
Charakteristischer Randabstand	C _{cr,N}	[mm	ո]	1,	5 h _{ef}		
Charakteristischer Achsabstand	S _{cr,N}			3	3 h _{ef}		
Montagebeiwert	γinst	[-]			1,0		
Betonausbruch auf der lastabg			ite				
aktor für Pryoutversagen	k ₈	[-]			2,0		
Betonkantenbruch		1.3					
Effektive Länge in Beton	I _f	T	40	45	5	0	55
Nomineller		⊢[mn		1			
Schraubendurchmesser	d_{nom}	•	-		6		
Nominelle Verankerungstiefe		[mm]	65	85	100	0	115
Stahlversagen für Zuglast und						_	
	$N_{Rk,s,eq}$	T	35	55	76	,	103
Charakteristischer Widerstand	$V_{Rk,s,eq}$	[kN]	11,4	22,3	26,	9	38,3
	$\alpha_{\sf gap}$,	0,			,
1)	$\alpha_{\sf gap}$	[-]		1,			
	- gap			,			
Charaktariaticahar \Midaratand in	NI I	FLA IZ	40		_2)		
gerissenem Beton	$N_{Rk,p,eq}$	[kN]	12		- -′		
Betonversagen							
Effektive Verankerungstiefe	h _{ef}		52	68	81		93
Charakteristischer Randabstand	C _{cr,N}	[mm]		1,5	h _{ef}		
Charakteristischer Achsabstand	S _{cr,N}			3 h	1 _{ef}		
Montagebeiwert	γinst	[-]		1,	0		
Betonausbruch auf der lastabg	ewandte	en Sei	te				
ottoriaaobraon aar acr laotabg	L	[-]		2,	0		
aktor für Pryoutversagen	k ₈	<u> </u>					
aktor für Pryoutversagen	K ₈						
<u>_</u>	I _f	.,	65	85	100	0	115
Faktor für Pryoutversagen Betonkantenbruch Effektive Länge in Beton Nomineller	I _f	[mm]					
Faktor für Pryoutversagen Betonkantenbruch Effektive Länge in Beton Nomineller	I _f		65 8	85 10	100 12		115 14
Faktor für Pryoutversagen Betonkantenbruch Effektive Länge in Beton Nomineller	I _f d _{nom}	[mm]					
Faktor für Pryoutversagen Betonkantenbruch Effektive Länge in Beton Nomineller Schraubendurchmesser 1) Ringspaltverfüllung gemäß	I _f d _{nom} Anhang	[mm] B 5	8				

Z63508.18

Sahrauhangräß a				FB	S II				
Schraubengröße			8	10	12	14			
Nominelle Verankerungstiefe	h_{nom}	[mm]	65	85	100	115			
Stahlversagen für Zuglast und	Querlas	t C2							
Charakteristischer Widerstand	$N_{Rk,s,eq}$	[LAI]	35,0	55	76,0	103			
Charakteristischer Widerstand	$V_{Rk,s,eq}$	[kN]	13,3	20,4	29,9	35,2			
Mit Ringspaltverfüllung ¹⁾	$\alpha_{\sf gap}$	[-]	1,0						
Herausziehen									
Charakteristischer Widerstand in gerissenem Beton	$N_{Rk,p,eq}$	[kN]	2,1	6,0	8,9	17,1			
Betonversagen									
Effektive Verankerungstiefe	h _{ef}		52	68	81	93			
Charakteristischer Randabstand	C _{cr,N}	[mm]		1,5	h _{ef}				
Charakteristischer Achsabstand	S _{cr,N}]		3	h _{ef}				
Montagebeiwert	γinst	[-]		1	,0				
Betonausbruch auf der lastabç	gewandt	en Sei	te						
Faktor für Pryoutversagen	k ₈	[-]		2	,0				
Betonkantenbruch									
Effektive Länge in Beton	l _f		65 85 100 115						
Nomineller	d _{nom}	[mm]	8 10 12 14						

¹⁾ Ringspaltverfüllung gemäß Anhang B 5, Anwendung ohne Ringspaltverfüllung nicht zulässig

fischer Betonschraube ULTRACUT FBS II

Leistungen
Leistung für Seismische Leistungskategorie C2 FBS II 8 - 14

Anhang C 4

Tabelle C5.1: Leistung u	nter Br	andbea	nspruc	hung mit FB	S II 6 1)					
FBS II 6										
Nominelle Verankerungstiefe		h_{nom}	[mm]	40	45	50	55			
Stahlversagen für Zuglast und	d Querla	st (F _{Rk,s,}	_{fi} = N _{Rk,s}	$_{,fi} = V_{Rk,s,fi}$)						
		R30			1,	00				
Charakteristischer Widerstand	$F_{Rk,s,fi}$	R60	FL-N17		0,0	60				
für alle Kopfformen		R90	[kN]	0,50						
		R120		0,40						
		R30			0,	80				
Charakteristisches	N 4 O	R60	[Nima]	0,50						
Biegemoment für alle Kopfformen	$M^0_{Rk,s,fi}$	R90	[Nm]		0,	40				
Торпотпоп		R120			0,	35				
Randabstand										
R30 bis R120		C _{cr,fi}	[mm]		2	h _{ef}				
Bei mehrseitiger Brandbeanspro	uchung b	eträgt de	er Randa	abstand ≥ 300	mm	<u> </u>				
Achsabstand										
R30 bis R120		S _{cr,fi}	[mm]		2 0	cr,fi				

¹⁾ Im nassen Beton ist die Verankerungstiefe im Vergleich mit dem angegebenen Wert um mindestens 30 mm zu erhöhen

fischer Betonschraube ULTRACUT FBS II

Leistungen
Leistung unter Brandbeanspruchung FBS II 6

Anhang C 5

Tabelle C6.1:	Leistun	g unter	Brand	peans	pruc	hunç	g mit	FBS	S II 8	– 14	1 ''				
Schraubengröße										FB	S II				
Schraubengroße					8	3	10			12			14		
Nominelle Veranker	ungstiefe)	h_{nom}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Stahlversagen für	Zuglast	und Que	rlast (F	Rk,s,fi =	N _{Rk,s,}	$_{fi} = V_{F}$	k,s,fi)								
			R30		2,3	33		3,45			4,62			6,4	16
		_	R60	1	1,8	82		2,73			3,66			5,1	1
	US, S	$F_{Rk,s,fi}$	R90] 	1,3	30		2,00		2,69			3,75		'5
			R120		1,0	04		1,64			2,20		3,08)8
			R30 [kN]		2,	12		2,96			-				
Charakteristischer	SK,	_	R60	1		67		2,26		1					
Widerstand für Kopfform	US TX, S TX	$F_{Rk,s,fi}$	R90	1	1,	1,21 1,56			-			-			
TOPHOTH 5 1A	317		R120	1	0,9	99		1,21		1					
			R30		2,0	62		4,92			7,83			12,	89
	Alle	0	R60	260		05		3,89			6,20			10,	19
	Kopf- formen	${\sf M^0}_{\sf Rk,s,fi}$	R90	[Nm]	1,4	46	2,85		4,56		7,48		18		
	loilleil		R120	1		17		2,34		3,73		6,14			
Herausziehen															
			R30												
Charakteristischer		NI	R60	[kN]	1,5	3,0	2,3	3,0	5,0	2,9	4,2	6,6	3,2	4,9	8,1
Widerstand		$N_{Rk,p,fi}$	R90	ן נאואן											
			R120]	1,2	2,4	1,8	2,4	4,0	2,3	3,3	5,2	2,5	3,9	6,5
Randabstand															
R30 bis R120			$C_{cr,fi}$	[mm]						2	1 _{ef}				
Bei mehrseitiger Bra	andbeans	spruchun	g beträg	t der F	Randa	bstar	nd ≥ 3	00 m	m						
Achsabstand															
R30 bis R120			$\mathbf{S}_{cr,fi}$	[mm]						2 c	cr,fi				

¹⁾ Im nassen Beton ist die Verankerungstiefe im Vergleich mit dem angegebenen Wert um mindestens 30 mm zu erhöhen

fischer Betonschraube ULTRACUT FBS II

Leistungen
Leistung unter Brandbeanspruchung FBS II 8 - 14

Anhang C 6

Tabelle C7.1: Verschiebungen unter Zuglasten (statisch)

Schraubengröße									FBS II						
Schladbengroße			6 ¹⁾		8			10		12			14		
Nominelle Verankerungstiefe	h_{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	115
Zuglast in gerissenem Beton	N	[kN]	2,0	3,5	2,9	5,7	4,3	5,7	9,6	5,5	8,0	12,5	6,1	9,4	15,3
Verschiebung	δ_{N0}	[mm]	1,1	1,4	0,5	0,9	0,7	0,7	0,8	0,7	0,9	0,8	0,8	1,0	0,8
Verschiebung	$\delta_{N\infty}$	[mm]	2,5	2,5	1,3	1,0	0,7	0,7	0,8	1,3	0,9	0,8	1,1	1,0	1,1
Zuglast in ungerissenem Beton	N	[kN]	4,0	7,0	7,9	12,0	6,8	8,8	13,5	7,7	11,0	17,4	8,5	13,2	21,6
Verschiebung	δ_{N0}	[mm]	1,0	1,8	0,9	1,4	0,9	0,9	1,4	0,9	1,1	1,4	1,0	1,3	1,1
Verschiebung	$\delta_{N\infty}$	[mm]	1,7	2,6	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,1	1,3	1,1

¹⁾ Zwischenwerte dürfen linear interpoliert werden

Tabelle C7.2: Verschiebungen unter Querlasten (statisch)

Sohrauhangräßa	Schraubengröße								FBS II						
Schlaubengroße			6 ¹⁾		8		10			12			14		
Nominelle Verankerungstiefe	h_{nom}	[mm]	40	55	50	65	55	65	85	60	75	100	65	85	115
Querlast in gerissenem und ungerissenem Beton	V	[kN]	4,5	6,7	6,2	9,0	14,0	14,0	16,6	15,9	15,9	21,2	23,0	23,0	30,5
Verschiebung	δ_{V0} $\delta_{V\infty}$	[mm]	2,0 2,9	2,9 4,4	1,4 2,0	1,4 2,1	3,2 4,9	3,2 4,9	3,2 4,9	2,5 3,8	2,5 3.8	3,4 5,1	2,8 4,2	2,8 4,2	5,4 8,1

¹⁾ Zwischenwerte dürfen linear interpoliert werden

Tabelle C7.3: Verschiebungen unter Zuglasten (Seismische Leistungskategorie C2)

Sohrauhangräßa		FBS II							
Schraubengröße			8	10	12	14			
Nominelle Verankerungstiefe	h_{nom}		65	85	100	115			
Verschiebung DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,5	0,8	0,9	1,3			
Verschiebung ULS	$\delta_{\text{N,eq (ULS)}}$		1,7	2,8	2,7	5,0			

Tabelle C7.4: Verschiebungen unter Querlasten (Seismische Leistungskategorie C2)

Sobraubonarä@o			FBS II								
Schraubengröße			8	10	12	14					
Nominelle Verankerungstiefe	h_{nom}		65	85	100	115					
Verschiebung DLS	$\delta_{\text{V,eqDLS})}$	[mm]	1,6	2,7	3,1	4,1					
Verschiebung ULS	$\delta_{\text{V,eq (ULS)}}$		3,9	7,1	5,3	8,7					

fischer Betonschraube ULTRACUT FBS II	
Leistungen Verschiebungen unter Zug- und Querbeanspruchung	Anhang C 7